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Abstract. In this paper, we propose a cluster-based cumulative rep-
resentation for cluster ensembles. Cluster labels are mapped to incre-
mentally accumulated clusters, and a matching criterion based on maxi-
mum similarity is used. The ensemble method is investigated with boot-
strap re-sampling, where the k-means algorithm is used to generate high
granularity clusterings. For combining, group average hierarchical meta-
clustering is applied and the Jaccard measure is used for cluster similarity
computation. Patterns are assigned to combined meta-clusters based on
estimated cluster assignment probabilities. The cluster-based cumula-
tive ensembles are more compact than co-association-based ensembles.
Experimental results on artificial and real data show reduction of the
error rate across varying ensemble parameters and cluster structures.

1 Introduction

Motivated by the advances in classifier ensembles, which combine the predictions
of multiple classifiers; cluster ensembles that combine multiple data partitionings
have started to gain an increasing interest [1–8].

Cluster ensembles can be illustrated by the schematic model in Figure 1. The
model includes two main elements, the ensemble generation and the combina-
tion scheme. The ensemble generation takes as input a dataset of d-dimensional
pattern vectors represented by an N × d matrix X = {x(i)}Ni=1, where N is
the number of patterns and the row vector x(i) represents the ith pattern. The
ensemble generation generates multiple clusterings, represented here by cluster
label vectors {y(b)}Bb=1. The combining scheme (or the consensus function [1]),
can be thought of as comprising two sub-elements. The first is the ensemble map-
ping which defines a representation Z of the ensemble outputs and an associated
mapping method. The lack of direct correspondence between the labels gener-
ated by the individual clusterings leads to the need for this mapping component.
For instance, the co-association (or co-occurrence) matrix [2] is an example of a
representation generated by an ensemble mapping that side-steps the label corre-
spondence problem, at a computational cost of O(N2). The maximum likelihood
mapping [8] is another example of ensemble mapping in which the re-labelling
problem is formulated as a weighted bipartite matching problem and is solved
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using the Hungarian method [9] with a computational cost of O(k3) where k is
the number of clusters.
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Fig. 1. Schematic model of cluster ensembles

The second sub-element of a combining scheme is the combining algorithm
which uses Z to generate the combined clustering ŷ. A potential derivative of the
cluster ensemble is the estimation of the probabilities p̂ with which data points
belong to the combined clusters. The combining algorithm often lends itself to
a clustering problem, where the data is given by the new representation Z. It
is noted that if the label correspondence problem is resolved and the number of
clusters c in the base clusterings {y(i)}Bi=1 is the same as the number of clusters k
in the combined clustering ŷ, majority voting [6] or maximum likelihood classifi-
cation [8] can be readily applied. However, if c 6= k, co-association-based consen-
sus functions are often applied [2–4]. While allowing arbitrary cluster structures
to be discovered, co-association-based consensus functions are computationally
expensive and hence not practical for large datasets.

Re-sampling methods are well established approaches for estimating im-
proved data statistics [10]. In particular, bagging [11] has been introduced in
regression and classification. In bagging, the training dataset of size N is per-
turbed using bootstrap re-sampling to generate learning datasets by randomly
sampling N patterns with replacement. This yields duplicate patterns in a boot-
strap dataset. The bootstrap re-sampling process is independently repeated B
times and the B datasets are treated as independent learning sets.

Dudoit and Fridlyand [6] used bagging with the Partitioning Around Medoids
(PAM) clustering method to improve the accuracy of clustering. They use two
methods for combining multiple partitions. The first applies voting and the sec-
ond creates a new dissimilarity matrix similar to the co-association matrix used
in [2]. In the voting method, the same number of clusters is used for clustering
and combining, and the input dataset is clustered once to create a reference
clustering. The cluster labels of each bootstrap replication are permuted such
that they fit best to the reference clustering. They reported that the bagged
clustering were generally as accurate and often significantly more accurate than
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a single clustering. Fischer and Buhmann [8] applied bagging to improve the
quality of the path-based clustering method. They critiqued the use of a ref-
erence clustering in the mapping method of Dudoit and Fridlyand [6], arguing
that it imposes undesirable influence. Instead, they selected a re-labelling out
of all k! permutations for a clustering, such that it maximizes the sum over the
empirical cluster assignment probabilities estimated from previous mappings,
over all objects of the new mapping configuration. The problem of finding the
best permutation is formulated as a weighted bipartite matching problem and
the Hungarian method is used to solve a maximum bipartite matching problem.
They reported that bagging increases the reliability of the results and provides
a measure of uncertainty of the cluster assignment. Again, in this method, the
number of clusters used in the ensemble is the same as the number of combined
clusters. Minaei, Topchy and Punch [7] empirically investigated the effectiveness
of bootstrapping with several consensus functions by examining the accuracy
of the combined clustering for varied resolution of partitions (i.e., number of
clusters) and ensemble size. They report that clustering of bootstrapping leads
to improved consensus clustering of the data. They further conclude that the
the best consensus function remains an open question, as different consensus
functions seem to suit different cluster structures.

In this paper, we propose an ensemble mapping representation based on the
generated clusters, as high-level data granules. Re-labelling of clusters is based on
maximizing individual cluster similarity to incrementally-accumulated clusters.
Based on this representation, different combining algorithms can be used such as
hierarchical clustering algorithms, for instance. Here, group average (i.e. average
link) hierarchical meta-clustering is applied. We experimentally investigate the
effectiveness of the proposed consensus function, with bootstrap re-sampling,
and the k-means as the underlying clustering algorithm.

2 Cluster-Based Cumulative Ensemble

2.1 Ensemble Mapping

The ensemble representation consists of a cumulative c×N matrix Z summaris-
ing the ensemble outputs, where c is a given number of clusters that is used in
generating multiple clusterings, such that k ≤ c≪ N where k is the number of
combined clusters. The data values in Z reflect the frequency of occurrence of
each pattern in each of the accumulated clusters.

The k-means algorithm with the Euclidean distance is used to generate a
clustering y(b) = π(X(b), c) of a bootstrapped learning set in {X(b)}Bb=1, where
B is the size of the ensemble, and y(b) is an N -dimensional labeling vector. That
is, π is a mapping function π : X(b) → {0, · · · , c}, where ‘0’ label is assigned to
patterns that didn’t appear in the bootstrap learning set X(b).

Each instance of the c×N matrix, denoted by Z(b), is incrementally updated
from the ensemble {y(b)}Bb=1 as follows.

1. Z(1) is initialized using y(1), as given below. Re-labelling and accumulation
start by processing clustering y(2).
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z
(1)
ij =

{

1 if object j is in cluster i according to clustering y(1)

0 otherwise

2. Let each cluster in a given clustering y(b+1) be represented by a binary N-
dimensional vector v with 1’s in entries corresponding to the cluster mem-

bers and 0’s otherwise. Let each cluster extracted from the rows z
(b)
i of Z(b)

be represented by the binary N-dimensional vector w whose entries are 1’s

for non-zero columns of z
(b)
i and 0’s otherwise. Compute the similarity be-

tween each pair of vectors v and w using the Jaccard measure given as
J(v,w) = vw/(‖v‖2 + ‖w‖2 − vw)

3. Map each cluster label i ∈ {1, · · · , c} in clustering y(b+1) to its most similar
cluster labelled j ∈ {1, · · · , c} of the previously accumulated clusters rep-
resented by the rows of Z(b). Hence, increment the entries of row j of Z(b)

corresponding to members of the cluster labelled i in clustering y(b+1).
4. Z(b+1) ← Z(b). The mapping process is repeated until Z(B) is computed.

The cumulative cluster-based mapping of the ensemble culminates in the
matrix Z = Z(B), as a voting structure that summarises the ensemble. While
in the maximum likelihood mapping [8], the best cluster label permutation is
found and c = k is used, in this paper, each cluster is re-labelled to match its
most similar cluster from the accumulated clusters. This is done for the following
reasons. First, since the base clusterings represent high resolution partitions of
non-identical bootstrap learning sets, this leads to highly diverse clusterings,
such that finding the best permutation becomes less meaningful. For quantitative
measures of diversity in cluster ensembles, the reader is referred to [5]. Second,
since the accumulated clusters will be merged in a later stage by the combining
algorithm, we are most concerned at this stage in a mapping which maximizes
the similarities and hence minimizes the variance of the mapped clusters.

We found that this matching method can occasionally result in a cumulative
cluster to become singled out when no subsequently added clusters are mapped
to it. If a hierarchical clustering algorithm is used, this problem can lead to a
degenerate dendrogram and empty cluster(s) in the combined clustering. There-
fore, we detect this condition, and the corresponding solution is discarded. Usu-
ally, a good solution is reached in a few iterations. An alternative remedy is to
match each of the cumulative clusters to its most similar cluster from each sub-
sequently mapped clustering, instead of the reverse way. This ensures that the
above mentioned condition does not occur, but it can introduce influence from
earlier clusterings and less incorporation of the diversity in the ensemble.

An advantage of this representation is that it allows several alternative views
(interpretations) to be considered by the combining algorithm. For instance, Z

may be treated as a pattern matrix. This allows different distance/similarity
measures and combining algorithms to be applied to generate the combined
clustering. Alternatively, Z may be treated as the joint probability distribution
of two discrete random variables indexing the rows and columns of Z. This allows
for information theoretic formulations for finding of the combined clusters.
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Furthermore, the size of this representation is c × N versus N2 for the co-
association-based representation, where c ≪ N . While, in the case of the co-
association matrix, the hierarchical clustering algorithm runs on the N × N
matrix, in the case of the cluster-based cumulative representation, it runs on a
c× c distance matrix computed from the c×N matrix Z.

2.2 Combining Using Hierarchical Group Average Meta-clustering

Motivated by what is believed to be a reasonable discriminating strategy based
on the average of a chosen distance measure between clusters, the proposed al-
gorithm is the group average hierarchical clustering. The combining algorithm
starts by computing the distances between the rows of Z (i.e. the cumulative
clusters). This is a total of

(

c

2

)

distances, and one minus the binary Jaccard mea-
sure, given in Section 2.1, is used to compute the distances. The group-average
hierarchical clustering is used to cluster the clusters, hence the name meta-
clustering. In this algorithm, the distance between a pair of clusters d(C1, C2)
is defined as the average distance between the objects in each cluster, where
the objects in this case are the cumulative clusters. It is computed as follows,
d(C1, C2) = mean(z1,z2)∈C1×C2

d(z1, z2), where d(z1, z2) = 1− J(z1, z2)

The dendrogram is cut to generate k meta-clusters {Mj}
k
j=1 representing a

partitioning of the cumulative clusters {zi}
c
i=1. The merged clusters are aver-

aged in a k × N matrix M = {mji} for j ∈ {1, · · · , k} and i ∈ {1, · · · , N}. So
far, only the binary version of the cumulative matrix has been used for distance
computations. Now, in determining the final clustering, the frequency values ac-
cumulated in Z are averaged in the meta-cluster matrix M and used to compute
the cluster assignment probabilities. Then, each object is assigned to its most
likely meta-cluster. Let M be a random variable indexing the meta-clusters and
taking values in {1, · · · , k}, let X be a random variable indexing the patterns
and taking values in {1, · · · , N}, and let p̂(M = j|X = i) be the conditional
probability of each of the k meta-clusters, given an object i, which we also write
as p(Mj|xi). Here, we use xi to denote the object index of the pattern x(i),
and we use Mj to denote a meta-cluster represented by the row j in M. The
probability estimates p̂(Mj|xi) are computed as p̂(Mj |xi) =

mji
∑

k

l=1
mli

.

3 Experimental Analysis

Performance is evaluated based on the error rates which are computed by solving
the correspondence problem between the labels of a clustering solution and the
true clustering using the Hungarian method.

3.1 Experiments with Artificial Data

The artificial datasets are shown in Figure 2. The first, called “Elongated-
ellipses” consists of 1000 2D points in 2 equal clusters. The “Crescents” dataset
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consists of 1000 2D points in 2 equal clusters. The “Differing-ellipses” consists of
250 2D points in 2 clusters of sizes 50 and 200. The dataset called “8D5K” was
generated and used in [1]. It consists of 1000 points from 8D Gaussian distrib-
utions (200 points each). For visualization, the “8D5K” data is projected onto
the first two principal components.
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Fig. 2. Scatter plots of the artificial datasets. The last 8 dimensional dataset is pro-
jected on the first 2 principal components

For each dataset, we use B = 100, and vary c. We measure the error rate of
the corresponding bagged ensemble at the true number of clusters k and compare
it to the k-means at the same k. The results in Figure 3 show that the proposed
bagging ensemble significantly lowers the error rate for varied cluster structures.
In order to illustrate the cluster-based cumulative ensemble, we show in Figure
4 (a) a plot of the points frequencies in each of the accumulated clusters at c = 4
for the “elongated-ellipses” dataset. The points are ordered such that the first
500 points belong to the first cluster followed by 500 from the second cluster. The
dendrogram corresponding to the hierarchical group average meta-clustering on
the 4 cumulative clusters is shown in Figure 4 (b).

3.2 Experiments with Real Data

We use six datasets from the UCI machine learning repository. Since the Euclid-
ean distance is not scale invariant, we standardize the features for those datasets
in which the scales widely vary for the different features. The datasets used are,
(1) the iris plant dataset, (2) the wine recognition dataset, (3) the Wisconsin
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Fig. 3. Error rates for artificial datasets using the bagged cluster ensembles and the
k-means algorithm at given k
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breast cancer dataset, (4) the Wisconsin diagnostic breast cancer (WDBC), (5)
a random sample of size 500 from the optical recognition of handwritten digits
dataset, and (6) a random sample of size 500 from the pen-based recognition of
handwritten digits dataset. We standardized the features for the wine recogni-
tion and the WDBC datasets. The mean error rates of the k-means (over 100
runs), at the true k, for the above datasets are, 0.2007, 0.0378, 0.0395, 0.0923,
0.2808, 0.3298, respectively.

4 6 8 10 12
0

0.2

0.4

0.6

0.8

c

er
ro

r 
ra

te

Iris Plant

4 6 8 10 12
0

0.2

0.4

0.6

0.8

c

er
ro

r 
ra

te

Wine

4 6 8 10 12
0

0.1

0.2

0.3

0.4

c

er
ro

r 
ra

te

Breast Cancer

4 6 8 10 12
0

0.2

0.4

0.6

0.8

c

er
ro

r 
ra

te

WDBC

15 20 25 30
0

0.2

0.4

0.6

0.8

c

er
ro

r 
ra

te

Optical digits

15 20 25 30
0

0.2

0.4

0.6

0.8

c

er
ro

r 
ra

te

Pen-based digits

cluster-based - alink
pattern-based - alink
pattern-based - slink
pattern-based - clink

Fig. 5. Error rates on the real datasets for the proposed ensemble versus co-
associations-based ensembles using single, complete and average link.

Figure 5 shows a comparison of the cluster-based cumulative ensembles with
hierarchical group average (denoted in Figure 5 by cluster-based alink) to pattern
co-association-based ensembles, when single, complete and average link variants
of the hierarchical clustering are applied (denoted by pattern-based slink, clink,
and alink, respectively). In the experiments, we use B = 100 and k corresponding
to the true number of clusters. The results show that the cluster-based alink en-
sembles perform competitively well compared to pattern-based alink ensembles.
On the other hand, the co-association-based single and complete link ensembles
showed poor performance.
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Fig. 6. Effect of ensemble size B. The X-axis is log scale.

3.3 Varying The Ensemble Size

We study the effect of the ensemble size B, for values of B ≤ 100. Figure 6
shows the mean error rates on real and artificial datasets for B = 5, 10, 25, 50,
and 100, and for varying number of base clusters c. Each ensemble at a given
c and B is repeated r = 5 times and the mean is computed. There is a general
trend of reduction in error rates as B increases. However, we observe that most
gain in accuracy occurs for B = 25, and 50. We also observe that the differences
between the error rates of ensembles of varying values of c tend to decrease as B
increases, i.e., the variability of the error rates corresponding to different values
of c is reduced when B is increased. However, in some cases, it is noted that
that amount of reduction in the error depends on c. For instance, this can be
observed for c = 4 in the crescents and differing-ellipses datasets.

4 Conclusion

The proposed cluster-based cumulative representation is more compact than
the co-association matrix. Experimental results on artificial datasets emphasised
the potential of the proposed ensemble method in substantially lowering the er-
ror rate, and in finding arbitrary cluster structures. For the real datasets, the
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cluster-based cumulative ensembles, using group average hierarchical clustering,
significantly outperformed co-association-based ensembles, using the single and
complete link algorithms. They showed competitive performance compared to
co-association-based ensembles, using the group average algorithm. In [12], the
group average algorithm is shown to approximately minimize the maximum clus-
ter variance. Such model seems to represent a better fit to the data summarised
in Z. A further potential benefit of this paper is that co-association-based con-
sensus functions other than hierarchical methods, such as [3, 4], can also be
adapted to the cluster-based cumulative representation, rendering them more
efficient. This will be investigated in future work.
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